We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Frequency Theory?

By Matthew F.
Updated Mar 01, 2024
Our promise to you
InfoBloom is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At InfoBloom, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Frequency theory attempts to explain how the brain experiences sound waves.  While frequency theory is primarily a physiological theory that seeks to explain how the anatomical structure of the ear accounts for hearing, it is also a psychological theory that explores how sound is experienced by the mind. 

Before frequency theory can be fully understood, a brief description of the physiological structure of the ear is necessary. Sound is picked up by the outer ear, which is comprised of the auricle and the external auditory canal. At this stage, sound is an acoustical signal. Separating the outer and middle ear is the tympanic membrane or eardrum. As the acoustical signal enters the middle ear, the acoustic signal becomes mechanical due to the rocking motion of the ossicular chain, which transmits the signal and increases the gain of the signal about 22 decibels (dB) to the inner ear, where the sound will enter a fluid filled cavity, called the cochlea.

The cochlea sits in the inner ear and consists of three fluid-filled chambers: the scala tympani, the scala vesibule, and the scala media. The scala media contains the organ of corti, known as the hearing organ. The organ of corti houses hair cells that become excited when the signal enters the cochlea, which is now a hydraulic signal, and displaces the fluid. When the fluid is displaced, it excites the hair cells, which in turn causes them to convert the hydraulic signal to a mechanical signal. This causes the auditory nerve to fire, sending an electric signal to the auditory system of the brain, which the brain experiences as sound.

Frequency theory states that the pitch is encoded by the frequency of discharge in the primary auditory fiber. The basilar membrane moves up and down due to the displacement of the perilymph and endolymph fluid in the cochlea, caused by each individual sine wave. The movement of the membrane causes the hair cells in the cochlea to become excited. Each nerve correlates with a specific frequency. Once that specific wave enters the cochlea, its frequency and intensity is sensitive to a specific nerve and it causes that nerve to fire. The nerve cannot send another message until the message has been sent and the nerve recovers. Each nerve fiber in the auditory nerve sends the information to the auditory cortex where it assembles the information and puts it together to perceive and interpret the auditory signal.

Frequency theory, in more simplistic terms, explains how the human brain basically experiences a representation system of hearing. Frequency theory in essence claims that human beings do not actually experience sound waves themselves, but rather vibrations on the auditory nerve, the frequencies of which are identical to the frequencies of the sound waves coming into the ear.

InfoBloom is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

By Leonidas226 — On Feb 06, 2011

Sound, unlike light, requires a gas medium in order to operate. Light merely requires a medium of spacetime to work in. We still don't understand spacetime, but advances are being made to discover the very essence of our dimension, the "ether" of existence.

By TrogJoe19 — On Feb 05, 2011

Electromagnetic theory pairs with the frequency theory strongly in the design of sound systems in churches and concerts all over the world. We use a magnet to project our voices every time we speak into a microphone. The sound wave is translated into an electromagnetic wave and then transmitted on a louder level to the speaker. This is how we can deafen people with a whisper by using a microphone.

By BostonIrish — On Feb 03, 2011

The decibel is measured on a logarithmic scale, with the sound level increasing exponentially on the cline of decibels. Our brain, however, seems to measure sound on a mere psychological level of loudness meter, which is not exponential. We also cannot hear sounds which our outside of our hearing level, which exist all around us.

InfoBloom, in your inbox

Our latest articles, guides, and more, delivered daily.

InfoBloom, in your inbox

Our latest articles, guides, and more, delivered daily.