We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Energy

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Hypergeometric Distribution?

By David Isaac Rudel
Updated: May 23, 2024
Views: 7,490
Share

Hypergeometric distribution describes the probability of certain events when a sequence of items is drawn from a fixed set, such as choosing playing cards from a deck. The key characteristic of events following the hypergeometric probability distribution is that the items are not replaced between draws. After a particular object has been chosen, it cannot be chosen again. This feature is most significant when working with small populations.

Quality assessment auditors use the hypergeometric distribution when analyzing the number of defective products in a given group. Products are set aside after being tested because there is no reason to test the same product twice. Thus, the selection is done without replacement.

Poker probabilities are calculated using the hypergeometric distribution because cards are not shuffled back into the deck within a given hand. Initially, for example, one-fourth of the cards in a standard deck are spades, but the likelihood of being dealt two cards and finding both of them to be spades is not 1/4 * 1/4 = 1/16. After receiving the first spade, there are fewer spades left in the deck, so the probability of being dealt another spade is only 12/51. Hence, the probability of being dealt two cards and finding them both to be spades is 1/4 * 12/51 = 1/17.

Objects are not replaced between draws, so the probability of extreme scenarios is reduced for a hypergeometric distribution. One can compare being dealt red or black cards from a standard deck to flipping a coin. A fair coin will land on “heads” half the time, and half the cards in a standard deck are black. Yet the likelihood of getting five consecutive heads when flipping a coin is greater than the likelihood of being dealt a five-card hand and finding them all to be black cards. The probability of five consecutive heads is 1/2 * 1/2 * 1/2 * 1/2 * 1/2 = 1/32, or about 3 percent, and the likelihood of five black cards is 26/52 * 25/51 * 24/50 * 23/49 * 22/48 = 253/9996, or about 2.5 percent.

Sampling without replacement reduces the likelihood of extreme cases, but it does not affect the arithmetic mean of the distribution. The average number of heads expected when one flips a coin five times is 2.5, and this equals the average number of black cards expected in a five-card hand. Just as it is very unlikely that all five cards are black, it also is unlikely that none of them are. This is described in mathematical language by saying that replacement lowers the variance without affecting the expected value of a distribution.

Share
InfoBloom is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
https://www.infobloom.com/what-is-hypergeometric-distribution.htm
Copy this link
InfoBloom, in your inbox

Our latest articles, guides, and more, delivered daily.

InfoBloom, in your inbox

Our latest articles, guides, and more, delivered daily.